
Fault diagnosis for nonlinear aircraft
based on control-induced redundancy

Julien Marzat, Hélène Piet-Lahanier, Frédéric Damongeot, Eric Walter

Conference on Control and Fault Tolerant Systems
Nice , France, October 6-8 2010

SYSTOL 2010 - J.Marzat - 06/10/2010 - 1/17



Outline

Introduction
Related work
Objectives
Principles

Illustration
Aeronautical case study
FDI algorithm description

Simulation results
Simulation set-up
Robustness

Summary and future work

SYSTOL 2010 - J.Marzat - 06/10/2010 - 2/17



Nonlinear Fault Detection and Isolation - related work

Fault Detection and Isolation of actuator faults
for Nonlinear control-affine systems

Differential-geometric approach (De Persis & Isidori)

Transformation of coordinates to design nonlinear residual filters sensitive to
faults and decoupled from disturbances.

Differential-algebraic approach (Diop, Bokor, Shumsky...)

Transformation of the system into a set of differential polynomials, functions of
inputs, outputs and their successive derivatives. Use elimination theory to
extract fault information.

Inversion-based FDI (Edelmayer, Szigeti...)

Left-inverse computation to obtain dynamical model with faults as outputs and
original inputs, outputs and their successive derivatives as inputs.

SYSTOL 2010 - J.Marzat - 06/10/2010 - 3/17



Objectives

Known drawbacks of these nonlinear methods
Design of coordinate transforms, tuning of inner parameters
Successive time derivatives of noisy and disturbed measurements
Integration of dynamical filters

Objectives of present work

Avoid numerical differentiation of measured variables
Avoid dynamical integration, to reduce computational cost
Assess robustness to model and measurement uncertainty

New approach

Take advantage of systems involving measured state derivatives
(e.g., autonomous vehicles equipped with IMUs)
Design a completely nonlinear actuator fault diagnosis method
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Principles of the approach
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6-DOF aeronautical model

State vector : x = [ζ, vb,Θ,ω]T, ζ position in inertial frame,
vb speed in body frame, Θ orientation, ω angular velocity
Input vector : u = [δl, δm, δn, η]

T, rudders δ(·) and propulsion η

Measurements : y = [ab,ω]
T, acceleration in body frame ab

Nonlinear aircraft model


ab = v̇b + ω × vb = m−1 [faero (x,u) + fg(x)] force equation
ω̇ = I−1 [maero (x,u)− (ω × Iω)] momentum equation
ζ̇ = Rbi (x) vb coordinate transform
Θ̇ = RΘ (x)ω angular dynamics

SYSTOL 2010 - J.Marzat - 06/10/2010 - 6/17



6-DOF aeronautical model

State vector : x = [ζ, vb,Θ,ω]T, position in inertial frame ζ, speed
in body frame vb, orientation Θ, angular velocity ω
Input vector : u = [δl, δm, δn, η]

T, rudders δ(·) and propulsion η

Measurements : y = [ab,ω]
T, acceleration in body frame ab

Nonlinear aircraft model


ab = v̇b + ω × vb = m−1 [faero (x,u) + fg(x)] force equation
ω̇ = I−1 [maero (x,u)− (ω × Iω)] momentum equation
ζ̇ = Rbi (x) vb coordinate transform
Θ̇ = RΘ (x)ω angular dynamics

Starting point: force equation involves control inputs and only measured
or estimated state variables and their measured derivatives
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Preliminary step

Extract force equation, ab = m−1 [faero (x,u) + fg(x)]
abx = −Qsref

M [cx0 + cxaα+ cxδmδl + cxδmδm + cxδnδn]
+ 1

m [fmin + (fmax − fmin)η]

aby = Qsref
m [cy0 + cybβ + cyδlδl + cyδnδn]

abz =
Qsref

m [cz0 + czaα+ czδmδm]

Rewrite model (linear in u due to small-angle assumption) as f1
f2
f3

 =

 g11 g12 g13 g14
g21 0 g23 0
0 g32 0 0




δl
δm
δn
η


where fi and gij (i = 1, 2, 3, j = 1, 2, 3, 4) are nonlinear functions of y,
derived from above equations
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Direct Residual Generation

Estimate each control input as a function of measurements and
other computed control inputs. For example, ,{

δ̂la = f2−g23δnc
g21

δ̂na = f2−g21δlc
g23

Compare these estimates to corresponding computed inputs,{
r21 = δ̂la − δlc = f2−g23δnc

g21
− δlc

r23 = δ̂na − δnc =
f2−g21δlc

g23
− δnc

Example of sensitivity to faults. Inject expression of f2 into residual

r21 =
g21δla + g23δna − g23δnc

g21
− δlc = (δla − δlc) +

g23

g21
(δna − δnc)

→ Sensitivity to faults on δl and δn and possible identification on δl
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Additional Residual Generation

Further combinations between equations

Reminder :

 f1
f2
f3

 =

 g11 g12 g13 g14
g21 0 g23 0
0 g32 0 0




δl
δm
δn
η


From 3rd line, δ̂ma = f3/g32 can be used in other residuals, e.g.,

r11 =
f1 − g12δmc − g13δnc − g14ηc

g11
− δlc

to get

r̃1
11 =

f1 − g12
f3
g32
− g13δnc − g14ηc

g11
− δlc

This residual is now insensitive to faults affecting rudder δm
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Additional Residual Generation

From line 2, δ̂la and δ̂nacan be used similarly to get residuals that
are insensitive to faults on either δl or δn.
One step further: combine δ̂la and δ̂ma to obtain residuals insensitive
to faults on both actuators.
Same kind of substitution possible with δ̂ma and δ̂na.

Fault signature table – 27 residuals max with 8 different signatures

r1i r21/r23 r32 r̃1
1i r̃2

1i r̃3
1i r̃4

1i r̃5
1i

δl 1 1 0 1 0 1 0 1
δm 1 0 1 0 1 1 0 0
δn 1 1 0 1 1 0 1 0
η 1 0 0 1 1 1 1 1

(i = 1, 2, 3, 4)
Full isolation possible, and partial identification
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Simulation set-up

3 fault scenarios
1 Loss of 25% propulsion
2 Locking-in-place of δm then loss of 25% propulsion
3 Loss of 50% propulsion then locking of δm then locking of δn

IMU uncertainty

Measurement of q is q̃ = kqq + bq + wq

kq : scale factor, bq : bias, wq : Gaussian white noise
Delay of 2 time steps

Multiplicative model uncertainty

Each aerodynamic coefficient value is randomly chosen as either
csim = 0.95cmodel or csim = 1.05cmodel
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Trajectories
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Selection of residuals - Scenario 1
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Selection of residuals - Scenario 2
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Selection of residuals - Scenario 3
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Robustness of the residuals

Model error g12−sim = g12−model + ε, ε small and bounded

r̃5
14 =

1
g14

[(
g11 +

g13g21

g23

)
(δlc − δl) +

g12δm

g23
−

(g12 + ε) δm

g23
+ g13 (δn − δn)

]
+(ηc − η)

r̃5
14 = (ηc − η) +

g11g23 + g13g21

g14g23
(δlc − δl) +

g12

g23g14
εδm
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Summary and future work

Summary

Nonlinear FDI scheme applied to a realistic aeronautical model
Multiple faults detectable, isolable and identifiable
Static residuals : hard-coding possible, no tuning required
Acceptable robustness to model and measurement uncertainty
Formal description of the procedure in our NOLCOS 2010 paper +
MAPLE implementation providing residuals automatically

Future work
Loosen sensitivity of the static residuals with a sliding window
Automatic tuning of FDI approaches for systematic comparison
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